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Size effects on Debye temperature, Einstein temperature, and volume
thermal expansion coefficient of nanocrystals
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Abstract

Based on a size-dependent root of mean square amplitude (rms) model, the size-dependent Debye temperatures of nanocrystals are modeled
without any adjustable parameter by considering both Lindemann’s criterion and Mott’s equation. In terms of this model, the Debye temperatures
depend on both size and interface conditions, which lead to related applications on size effects of the Einstein temperature and the volume thermal
expansion coefficient. It is found that the model’s predictions are in good agreement with available experimental and computer simulation results.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The physical properties of nanocrystals have been inves-
tigated extensively both theoretically and experimentally due
to their scientific and industrial importance [1]. As the size
of low-dimensional materials decreases to the nanometer size
range, the electronic, magnetic, optic, catalytic, and thermody-
namic properties of the materials are significantly altered from
those of either the bulk or a single molecule [1]. Among these
properties of nanocrystals, the Debye temperature of nanocrys-
tals, ΘD(D), has received considerable attention, since it is
an essential physical quantity to characterize many material
properties, such as the thermal vibration of atoms and phase
transitions, where D denotes the diameter of nanoparticles
and nanowires or the thickness of thin films [2–12]. More-
over, some important physical properties and their size effects,
such as the Einstein temperature ΘE (D) and the volume ther-
mal expansion coefficient αv(D), are all related to the ΘD(D)
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function [4,7,13]. Once the ΘD(D) function is known, the other
two can be determined. Therefore, it is important to determine
this function.

It is now known that the above physical properties of a free
nanocrystal decrease as its D decreases [2,7,9,13], while they
can decrease or increase for nanocrystals embedded in a matrix
or deposited on a substrate [3–6,8,10–12]. A body of evidence
shows that enhancement or depression of the foregoing physical
properties of nanocrystals in a matrix essentially depends
on the chemical interaction at interfaces between embedded
nanocrystals and the matrix [3–6,8,10–12]. For instance, when
the interfaces are coherent or semi-coherent, which denotes
a strong bond connection, the enhancement of ΘD of the
nanocrystals is present [11,12]. Although size effects on all
of the above physical properties have been modeled separately
by a series of related theoretical approaches, consistent insight
and a systematic thermodynamic treatment considering both the
size and interface effects are highly desirable in order to reveal
the physical nature of the nanocrystals.

In this contribution, ΘD(D) functions of nanocrystals are
modeled in the form of the root of mean square amplitude (rms)
model. The model that is established is extended to predict
the size effects on ΘE and αv of nanocrystals. The model

http://www.elsevier.com/locate/ssc
mailto:jiangq@jlu.edu.cn
http://dx.doi.org/10.1016/j.ssc.2006.05.035


C.C. Yang et al. / Solid State Communications 139 (2006) 148–152 149
predictions agree well with known experimental and computer
simulation results.

2. Model

In terms of the Debye model, the ΘD function is related to
the rms σ by [4,14],

σ 2
∝ T/Θ2

D (1)

when T > ΘD(∞)/2, where T is the temperature and ∞

denotes the bulk size.
According to Lindemann’s criterion [15] for melting and

Mott’s equation [16,17], the size-dependent rms σ(D) has been
found to have the following form [14,18]:

σ(D)/σ (∞) =
√

exp{(α − 1)/[(D/D0) − 1]} (2)

where α = σ 2
s (D)/σ 2

ν (D), with σs(D) and σν(D) denoting
size-dependent rms values of the surface and interior atoms
of nanocrystals, respectively [14,18], and D0 shows a critical
diameter at which all atoms of a low-dimensional material are
located on its surface, which depends on dimension d and
atomic diameter h through [14,19],

D0 = 2(3 − d)h (3)

where d = 0 for nanoparticles, d = 1 for nanowires, and d = 2
for thin films.

In Eq. (2), the parameter α must be known to determine
σ(D). For crystals with free surfaces, such as free-standing
particles, particles or thin films deposited on inert substrates,
and nanowires in inert porous glasses, their σ 2

s (D) > σ 2
ν (D)

and α > 1 [14], and [14,19],

α = [21Svib(∞)/(3R)] + 1, (4)

where R is the ideal gas constant and 1Svib(∞) is the
vibrational part of the overall melting entropy 1Sm(∞), which
consists of at least three components: positional 1Spos(∞),
vibrational 1Svib(∞), and electronic 1Sel(∞) [17]. Namely,
1Sm(∞) = 1Svib(∞) + 1Spos(∞) + 1Sel(∞) and
1Spos(∞) = −R(xA ln xA + xB ln xB), where xA and xB are
molar fractions of crystals and vacancies, respectively [17].
For the melting transition, xA = 1/(1 + 1Vm/Vs), xB =

1 − xA, where 1Vm = Vl − Vs , with V being the molar
volume and the subscripts s and l denoting the crystal and the
liquid, respectively. For metallic crystals, the type of chemical
connection does not vary during the melting transition. Thus,
1Sel(∞) ≈ 0 [17] and 1Svib(∞) = 1Sm(∞)−1Spos(∞), or

1Svib(∞) = 1Sm(∞) + R(xA ln xA + xB ln xB). (5)

However, for semi-metals, 1Sel(∞) strongly contributes to
1Sm(∞). In this situation, 1Svib(∞) is determined by Mott’s
equation [16],

1Svib(∞) = 3R ln(νs/νl) = (3/2)R ln(cs/cl) (6)

where ν and c denote the characteristic vibration frequency and
electrical conductivity, respectively.
For nanocrystals embedded in a matrix with a coherent or
semi-coherent interface, their σ 2

s (D) < σ 2
ν (D) and α < 1 [19],

and [19],

α = [(hM/h)2Tm(∞)/TM (∞) + 1]/2, (7)

where hM denotes the atomic diameter of the matrix, and
Tm(∞) and TM (∞) are the bulk melting temperature of the
nanocrystals and the matrix, respectively.

Based on Eq. (1), it is assumed that ΘD(D) has the same size
dependence of 1/σ(D) as a first-order approximation, since the
nature of any phase transition is related to the potentials of the
two related phases of the crystals. Thus,

ΘD(D)/ΘD(∞) = σ(∞)/σ (D). (8)

Substituting Eq. (2) into Eq. (8), this reads,

ΘD(D)/ΘD(∞) =
√

exp{−(α − 1)/[(D/D0) − 1]}. (9)

Since ΘE (∞) ∝ ΘD(∞) [4] and αv(∞) ∝ 1/Θ2
D(∞) [7],

Eq. (9) can be extended for ΘE (D) and αv(D) functions as
follows:

ΘE (D)/ΘE (∞) =
√

exp{−(α − 1)/[(D/D0) − 1]}, (10)

αv(D)/αv(∞) = exp{(α − 1)/[(D/D0) − 1]}. (11)

3. Results and discussion

Comparisons between model predictions in terms of
Eqs. (4), (7) and (9) and the available experimental and
computer simulation results for ΘD(D) functions of Fe, β-Sn,
Se, Cu, Co, Au, and Ar/Al (Ar nanocrystals embedded in Al
matrix) nanocrystals are shown in Fig. 1, where the related
parameters are listed in Table 1 (parameters used for other
figures are also listed in this table). It is obvious that our model
predictions for different kinds of nanocrystals in different
surroundings correspond to the experimental and computer
simulation results in the full size range, which implies that Eq.
(9) is reasonable.

As shown in Fig. 1(a)–(f), ΘD(D) with α > 1 decreases
for free nanocrystals as D decreases. α > 1 implies a
decrease in ΘD(D) with an increase in the rms. Note that
Fe and β-Sn films in Fig. 1(a) and (b) may refer to fine
granular structures with high densities of inner surface/grain
boundaries and cannot be described by a continuous film [14].
This granular structure is similar to a random structure of a
chain polymer, modeled by the trajectory of a self-avoiding
walk with a fractal dimension of d = 4/3 [14]. It is obvious
that the depression for ΘD(D) of films with D is weaker than
that of nanoparticles, as shown in Fig. 1(a) and (b), which is
induced by different values of d and thus different values of
D0 in Eq. (3). Consequently, our model can also predict the
dimension dependence of ΘD(D), while different dimensions
of nanocrystals have different surface/volume ratios.

For nanocrystals embedded in a matrix with a coherent
or semi-coherent interface, such as the Ar/Al system in
Fig. 1(g), ΘD(D) with α < 1 increases as D decreases.
α < 1 implies the suppression of the rms of the nanoparticles
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Fig. 1. ΘD(D) functions of Fe, β-Sn, Se, Cu, Co, Au, and Ar/Al (Ar nanocrystals embedded in Al matrix). The solid lines in (a)–(f) denote the model predictions
in terms of Eqs. (4) and (9), while in (g) they denote the model predictions based on Eqs. (7) and (9) and D0 is determined by Eq. (3). (a) The symbols •
(nanoparticles, d = 0) [2], × [3], + [3], � [4], and © [4] (films with fine granular structures, d = 4/3 [14]) show the experimental results of Fe, where the error
bars are also shown (the same for the below). (b) The symbols • (films with fine granular structures, d = 4/3 [14]) [5] and � (nanoclusters embedded in SiO2
layers, d = 0) [6] show the experimental results of β-Sn. (c) The symbol � (nanoparticles, d = 0) [7] shows the experimental results of Se. (d) The symbol � (thin
films on graphite substrate, d = 2) [8] shows the experimental results of Cu. (e) The symbols � [9] and • [9] (nanoclusters, d = 0) show the experimental and
computer simulation results of Co, respectively. (f) The symbol � (thin films on mica substrate, d = 2) [10] shows the experimental results of Au. (g) For the Al
matrix, hM = 0.2863 nm [22] and TM (∞) = 933.47 K [20]. The symbol � (Ar nanoparticles embedded in Al matrix, d = 0) [11] shows the experimental results
of Ar/Al.
Table 1
Necessary parameters used to determine ΘD(D), ΘE (D), and αv(D) functions

ΘD(∞) Tm (∞) [20] 1Hm (∞) [20] 1Vm/Vs [21] (%) 1Svib(∞) h [22]

Fe 388.00 [4] 1811.00 13.80 3.4 6.42a 0.2482
β-Sn 140.00 [6] 505.08 9.25b 0.3181
Se 135.90 [7] 494.00 5.40 10.93c 0.4366 [7]
Cu 343.00 [8] 1357.77 13.10 4.9 8.08a 0.2556
Co 400.00 [9] 1768.00 16.20 3.9 7.83a 0.2507
Au 184.59 [10] 1337.33 12.50 5.1 7.74a 0.2884
Ar 70.00 [11] 83.80 0.3650 [11]
Pb 600.61 4.77 3.5 6.71a 0.3500

ΘD(∞) and Tm (∞) are in K, the bulk melting enthalpy 1Hm (∞) in kJ mol−1, 1Svib(∞) in J mol−1 K−1, and h is in nm.
a The values are calculated by Eq. (5), where 1Sm (∞) = 1Hm (∞)/Tm (∞) and R = 8.314 J mol−1 K−1.
b The value is determined by Eq. (6) with cs/cl = 2.10 [17].
c The values are approximately equal to 1Sm (∞) [19].
as a total effect induced by both the surface and the
interface. Although the surface of the nanocrystals still has
a tendency to lower the ΘD(D) value, the total effect of
the surface and the interface between the nanocrystals and
the matrix leads to a drop in the internal energy of the
nanocrystals and thus an increase in ΘD(D) as D decreases.
Note also that hM < h in the system reported above,
although it is not a necessary condition for α < 1 in
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Fig. 2. ΘE (D) function of Se. The solid line denotes the model predictions
in terms of Eqs. (4) and (10), where ΘE (∞) = 134.00 K [7], and D0 is
determined by Eq. (3). The symbol � (nanoparticles, d = 0) [7] shows the
experimental results of Se.

Eq. (9). It is plausible that if hM > h, the local internal stress
at the interface is a tensile stress, which increases, but does
not decrease the rms of the surface atoms of the nanocrystals.
Thus, any evident enhancement of ΘD(D) should occur under
the condition hM < h.

A comparison between the model predictions in the frame of
Eqs. (4) and (10) and the available experimental results for the
ΘE (D) function of Se nanocrystals is shown in Fig. 2, where
ΘE (D) decreases as D drops. There are good agreements
between the model predictions and the experimental evidence,
although only experimental results of ΘE (D) suppression are
compared due to the unavailability of experimental evidence.

As shown in Fig. 3(a) and (b), comparisons between the
model predictions based on Eqs. (4) and (11) and experimental
results for αv(D) of Se and Pb nanocrystals are presented. The
model predictions correspond to the experimental results of Se
nanocrystals over the full size range, as shown in Fig. 3(a).
For Pb nanocrystals in Fig. 3(b), our model can predict the
αv(D = 40 nm) value accurately in comparison with the
experimental results, while a big divergency between them is
found for the αv(D = 16 nm) value. One possible reason is
that the approximation of αv(D) = 3αl(D) could collapse in a
smaller size range (such as D = 16 nm). As mentioned above,
αv(D) increases with decreasing D. It is known that Ec ∝

1/αv , where Ec denotes the cohesive energy of atoms [13] and
Ec(D) decreases with decreasing D [24], which confirms Eq.
(11).

Note that, in the above consideration, the effect of size on
h has been neglected, i.e. Vs or h is assumed to be a size-
independent constant, namely 1Vs = Vs(∞) − Vs(D) ≈ 0
or 1h = h(∞) − h(D) ≈ 0. It is known that 1h/h =

1Vs/(3Vs) = 0.1%–2.5% when D < 20 nm, and it is neg-
ligible when D > 20 nm [25]. Thus, even for D < 20 nm,
[Vs(D)/Vs(∞)]2/3

≈ 0.95–0.97. According to Lindemann’s
criterion, ΘD = c1[Tm/(MV2/3

s )]1/2 [26], where c1 is a con-
stant and M denotes the molar weight and is size-independent.
Thus, Tm(∞) ∝ Θ2

D(∞)Vs(∞)2/3. If Tm(D) has the same size
dependence of Θ2

D(D)Vs(D)2/3 as a first-order approximation,
Tm(D)/Tm(∞) = [Θ2

D(D)/Θ2
D(∞)][Vs(D)/Vs(∞)]2/3. Sim-

ilarly, αv(D)/αv(∞)=[Θ2
D(∞)/Θ2

D(D)]/[Vs(D)/Vs(∞)]2/3,

since ΘD = c2/(αvMV2/3
s )1/2, with c2 being a constant [7].
Fig. 3. αv(D) functions of Se and Pb. The solid lines denote the model
predictions in terms of Eqs. (4) and (11) and D0 is determined by Eq. (3).
(a) For Se, αv(∞) = 9.45 × 10−5 K−1 is a mean value of 7.8 × 10−5 K−1 [7]
and 11.1 × 10−5 K−1 [23] as a first order approximation. The symbol �
(nanoparticles, d = 0) [7] shows the experimental results of Se. (b) For Pb,
αv(∞) = 8.7 × 10−5 K−1 [23]. The symbol � (nanoparticles, d = 0) [13]
shows the experimental results of Pb. Note that the original experimental results
is the linear expansion coefficient αl (D) of Pb nanocrystals. As a first order
approximation, αv(D) = 3αl (D) is used [23].

Thus, the error range induced by [Vs(D)/Vs(∞)]2/3 is only
3%–5% for the Tm(D) function in our former prediction [14,19]
and for the αv(D) function in the present prediction. This high-
order error has also been neglected for simplicity in Ref. [18].

As shown above, ΘD(D), ΘE (D), and αv(D) functions for
different kinds of nanocrystals and different surroundings can
be described as long as the related thermodynamic parameters
of crystals are known. The physical nature of the enhancement
or suppression of these physical properties is related to both
the surface/volume ratio and the interfacial energetic change
between embedded nanocrystals and the matrix.

4. Conclusions

In summary, a model for the ΘD(D) function is established
by considering both Lindemann’s criterion and Mott’s equation.
The ΘD(D) function decreases for free nanocrystals and
increases for nanocrystals having a strong chemical interaction
with their surroundings as D decreases. Since the ΘE (D) and
αv(D) functions have simple relations to the ΘD(D) function,
these functions are also developed. The model’s predictions
correspond to known experimental and computer simulation
results.
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