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Abstract

We report a unified model, free of any adjustable parameter, for size-dependence of intrinsic diffusion activation energy of

elements in crystals. It is found that as the size of the nanocrystals decreases, the diffusion activation energy of atoms decreases

and the corresponding diffusion coefficient strongly increases due to the Arrhenius relationship between them, which leads to

evident diffusion at the room temperature. The model prediction is in agreement with the experimental diffusion results of N

into bcc Fe and Ag into Au nanoparticles.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that there are lower diffusion activation

energy of atoms in nanocrystals or nanostructured materials

and thus larger diffusion coefficient than the corresponding

bulk counterpart due to the increase of surface (interface)/

volume ratio of the nanocrystals or nanostructured materials

[1–3]. The potential of this phenomenon for industrial

application is an evident drop of temperature for any

diffusion process. The latest example is that the nitrification

in bcc nanostructured Fe can be made at 573 K while this

operation usually is carried out at 773 K or higher [1].

Moreover, a rapid alloying between Ag shell and Au

nanocores may occur in several days at the room

temperature [2]. This kinetic property of materials in return

is also meaningful to consider the thermal stability of the

core-shell structure when the both sizes of the core and the

shell are only several nanometers or less [2,3]. The size and

temperature dependent diffusion coefficient function is also

an important parameter for any phase transition process

through nucleation and growth where the size of the formed

nucleus is 1–2 nanometers and inoculation time and growth

time are certainly related to the kinetic properties of a

material [4]. The understanding of this kind of scientific

problem becomes more urgent due to recent development on

the nanotechnology where the full size of the materials is in

nanometer size range [5,6].

Although the size-dependent properties of the kinetic

parameters are so useful, a unique attempt to establish a

quantitative model for describing this kind of size-

dependence, based on simply the consideration on surface/

volume ratio, cannot satisfactorily interpret the diffusion

coefficient of Ag in Au nanoparticles [3]. Thus, it is

necessary to model quantitatively the size and temperature

dependence of the diffusion coefficient Dðr;TÞ with r being

the radius of nanoparticles or grains and T being the

temperature.

In this contribution, a model for Dðr; TÞ function without

adjustable parameters is established through considering the

size-dependent activation energy EðrÞ: In light of the model,

it is found that when r is several nanometers, in one side, at

the same T ; Dðr;TÞ=Dð1; TÞ could even be more than 1010

due to the drop of EðrÞ where 1 denotes the bulk size; in the

other side, when a constant diffusion coefficient is needed,

the diffusion temperature can decreases for several hundreds

of degrees. The model predictions correspond to the
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experimental results of N diffusing into bcc nanostructured

Fe and Ag shell diffusing into Au nanocores.

2. Model

To begin with, a well-known Arrhenius dependence for

self-diffusion or intrinsic diffusion coefficient of interdiffu-

sion Dðr; TÞ is introduced [2],

Dðr; TÞ ¼ D0ðrÞexp½2EðrÞ=ðRTÞ� ð1Þ

where D0ðrÞ denotes a pre-exponential constant, R is the

ideal gas constant.

To establish an EðrÞ function, D½r;TmðrÞ� ¼ D½1;

Tmð1Þ� is assumed [2] where TmðrÞ and Tmð1Þ denote the

size-dependent and the bulk melting temperature. Thus,

D½r; TmðrÞ� ¼ D0ðrÞexp{ 2 EðrÞ=½RTmðrÞ�} ¼ D0ð1Þ

exp{ 2 Eð1Þ=½RTmð1Þ�} in terms of Eq. (1). According to a

point defect mechanism, D0 is proportional to expðDS=RÞ

where DS is the activation entropy, DH ¼ EðrÞ is the

activation enthalpy. In terms of a general thermodynamic

relationship, T½›DSðrÞ=›T�P ¼ ½›EðrÞ=›T�P where P ¼ 2f =r

is the internal pressure which holds for a spherical particle at

a certain size. Thus, DSðrÞ varies as EðrÞ changes. However,

the change of DSðrÞ induced by vibrational frequency

change due to the activation process is less than 5%, which

is rather small, even if r varies from bulk to 2–3 nm [7].

This fact implies that EðrÞ is almost temperature indepen-

dent. D0ðrÞ is thus a weak function of r while the effect of

the exponential term of exp½2EðrÞ=ðRTÞ� on Dðr; TÞ is much

stronger. As a first order approximation, D0ðrÞ < D0ð1Þ is

assumed (in the following, D0 is used as abbreviation).

Therefore,

EðrÞ=Eð1Þ ¼ TmðrÞ=Tmð1Þ ð2Þ

TmðrÞ=Tmð1Þ functions can be deduced by considering the

averaged mean square displacement (msd) of atoms in a

nanocrystal s2ðrÞ with [8],

s2ðrÞ ¼ s2
VðrÞ þ ½s2

SðrÞ2 s2
VðrÞnS=nV� ð3Þ

where the subscripts S and V denote surface and interior

atoms of a particle, n is the atom number of a nanocrystal

with nS=nV ¼ ð4pr2h=V0Þ=½ð4=3Þpr3=V0 2 ð4pr2h=V0Þ� ¼

3h=ðr 2 3hÞ when the shape of the nanocrystal is considered

as spherical or quasi-spherical where V0 and h show the

volume of the nanocrystal and the atomic diameter. The msd

of the nanocrystal is larger than the corresponding bulk

value not only on its surface, but also in its core, or the both

s2
VðrÞ and s2

SðrÞ are size-dependent. However, it is assumed

that s2
SðrÞ=s

2
VðrÞ ¼ s2

Sð1Þ=s2
Vð1Þ ¼ a is size-independent

[8]. Since the cooperative coupling between the surface

region and the interior region may be important for small

particles, the variation of s2ðrÞ is considered phenomen-

ologically to be dependent on the value of s2ðrÞ itself [8],

which leads to [8],

s2ðx þ dxÞ2 s2ðxÞ ¼ ða2 1Þs2ðxÞdx ð4Þ

where x ¼ nS=nV ¼ r0=ðr 2 r0Þ with r0 ¼ 3h: Integrating

Eq. (4),

ðr

1

1

s2ðxÞ
ds2ðxÞ ¼ ða2 1Þ

ðx

0
dx;

or,

s2ðrÞ=s2ð1Þ ¼ exp½ða2 1Þx� ¼ exp½ða2 1Þ=ðr=r0 2 1Þ� ð5Þ

In Eq. (5), r0 as a radius of a nanoparticle where almost all

atoms are located on the surface has been further extended

for different dimensions of all low-dimensional crystals

[9–11]. Let d denote the dimension and d ¼ 0 for

nanoparticles where r has a usual meaning of radius, d ¼

1 for nanowires with r being taken as its radius and d ¼ 2 for

thin films with r denoting its half thickness. r0 is given by

(1) r0 ¼ 3h for d ¼ 0 since 4pr2
0h ¼ 4pr3

0 =3; (2) r0 ¼ 2h for

d ¼ 1 since 2pr0h ¼ pr2
0 ; and (3) r0 ¼ h for d ¼ 2 since

2h ¼ 2r0: In short, the relationship between d and r0 is given

by [9–11],

r0 ¼ ð3 2 dÞh: ð6Þ

To find a convenient means for correlating TmðrÞ to

measurable physical properties such as s2; Lindemann

criterion [12–14], which says that a crystal will melt when

s=h reaches a certain fraction of c; is useful and is known to

be valid qualitatively for small particles,

s=h ¼ c: ð7Þ

Although c varies a bit with crystal structure. It is 0.13 for

fcc crystal and 0.18 for bcc crystal [14]. This difference is

partly induced by the change of h; which depends on the

coordination number of a lattice CN [15]. A smaller CN

corresponds to a smaller h [16]. In order to reduce or

eliminate this difference among distinct lattices or CNs, h

here is calculated by atom volume that is little dependent on

the lattice structure [15]. With this h; c is almost a lattice-

independent.

Since TmðrÞ is usually higher than the bulk Debye

temperature QDð1Þ; the high temperature approximation

can be utilized [8,17,18], s2ðr; TÞ ¼ f ðrÞT ; where f ðrÞ

is a size-dependent function. Thus, at any T ; s2ðr; TÞ=

s2ð1; TÞ ¼ f ðrÞ=f ð1Þ:Moreover, when T ¼ Tm; f ðrÞ=f ð1Þ ¼

{s2 ½r; Tm ðrÞ� =h2}={s2 ½1; Tm ð1Þ� = h2} ½Tmð1Þ = Tm ðrÞ� ¼

Tmð1Þ=TmðrÞ in terms of Eq. (7). In light of the above

equations, TmðrÞ=Tmð1Þ ¼ exp½2ða2 1Þ=ðr=r0 2 1Þ� where

a ¼ 2Svibð1Þ=ð3RÞ þ 1 for low-dimensional crystals with

free surface [Svibð1Þ is the bulk melting entropy] [11],

namely,

TmðrÞ=Tmð1Þ ¼ exp{ 2 2Svibð1Þ=½3Rðr=r0 2 1Þ�}: ð8Þ

For metallic and organic crystals consisting of a single

element or a single compound, Svibð1Þ is the essential

contribution on the overall bulk melting entropy Smð1Þ
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because the contributions of the configuration term and

electronic term on Smð1Þ are small [19]. Thus, Svibð1Þ <
Smð1Þ is taken.

Eq. (8) has been widely utilized to predict TmðrÞ

functions of crystals with different chemical bonds, such

as metallic [9], semiconductors [10] and organic crystals

[11]. Fig. 1 gives an example to confirm the validity of

Eq. (8) where the earliest [20] and the latest [2] experimental

results with different experimental techniques and computer

simulation results [21] of Au are shown. Eq. (8) corresponds

to the experimental and computer simulation results where

as r decreases, TmðrÞ decreases. Note that the shape of the

particles affects TmðrÞ value through r0 in terms of Eq. (6)

where the experimental results [2,20] are predicted with d ¼

1 while the computer simulation results [21] are done with

d ¼ 0: This is because only the computer simulation may

guarantee a free surface of nanocrystals. For both experi-

mental results, the particles are either coated with porous

silica shells [2] or deposited on substrate having an island

shape [21], which leads to a quasi-dimension of one [9].

Substituting Eq. (8) into Eq. (1) through Eq. (2),

Dðr; TÞ ¼ D0exp
2Eð1Þ

RT
exp

22Svibð1Þ

3R

1

r=r0 2 1

� �� �
: ð9Þ

3. Results and discussion

Fig. 2 shows a comparison between Eq. (9) and

experimental results for Dðr; TÞ function of N atoms

diffusing into nanostructured bcc Fe [1]. Although only

one experimental point shown in Fig. 2 is difficult to supply

the consistency of Dðr; TÞ function in the whole range of r

with the experiment, this experimental point fits the model

parameters. In Fig. 2, even T decreases from 773 to 573 K,

the diffusion coefficient remains constant since the grain

size of bcc Fe decreases to 6.5 nm.

Fig. 3 gives the model prediction of Eq. (9) and

experimental results for Dðr; TÞ functions of Ag diffusing

into Au nanocores [3]. Since the size distribution of Au

nanocores in Fig. 3 is 1.25 nm ^ 20% [3] while the mean

size difference of two experimental points is only 0.47 nm,

the experimental points overlap each other. Dðr; TÞ function

Fig. 1. TmðrÞ=Tmð1Þ functions of Au crystals denoted as a solid line

in terms of Eq. (8). X [2], B [20] and O [21] show the experimental

and the computer simulation results. The related parameters in Eq.

(8) are: h ¼ 0:2884 nm [15], d ¼ 1 for experimental results [2,20]

while d ¼ 0 for the computer simulation results [21]. Tmð1Þ ¼

1337:58 K [22] and Smð1Þ ¼ 9:3826 Jg-atom21K21 [22].

Fig. 2. Dðr; TÞ function of N diffusing into bcc nanostructured Fe

shown as the solid line in terms of Eq. (9) where r is the radius of the

grain size of Fe [1]. The parameters in Eq. (9) are as follows:

h ¼ 0:2483 nm and d ¼ 0 for Fe [15], which leads to r0 ¼ 0:7449

nm: Since N in vapor state is unique diffusion element, the

sublimation entropy Sc for N is used to substitute Smð1Þ with Sc ¼

36:106 Jg-atom21K21 [22]. D0 ¼ 7:46 £ 1027 m2 s21 and

Emð1Þ ¼ 78:3 KJg-atom21 are obtained through substituting two

experimental results of Dð1; 573 KÞ ¼ 5:4 £ 10214 m2 s21 and

Dð1; 773 KÞ ¼ 3:8 £ 10212 m2 s21 [23] into Eq. (1). The symbol

B denotes the experimental results where Dð6:5; 573 �

KÞ ¼ Dð1; 773 KÞ [1].

Fig. 3. Dðr; TÞ function of Ag diffusing into Au core shown as the

solid line in terms of Eq. (9) where r is the total radius of the both of

the Au core and the Ag shell [3]. The parameters for Au in Eq. (8)

are as follows: h ¼ 0:2889 nm [15] and d ¼ 0; which leads to

r0 ¼ 0:8667 nm: Sm ¼ 9:157 Jg-atom21 K21 [22]. D0 ¼

7:2 £ 1026 m2 s21 [24] and Emð1Þ ¼ 169:8 KJg-atom21 [24].

The symbol B with the corresponding size error denotes the

experimental results where Dð1:96; 300 KÞ ¼ 2:1 £ 10224 m2 s21

and Dð2:43; 300 KÞ ¼ 7:5 £ 10225 m2 s21 [3].
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in terms of Eq. (9) is just located within them and within the

size range of the experimental uncertainty [3]. Note that

although the experiment itself shows a process of inter-

diffusion between Ag shell and Au cores that involves

Kirkendall effect. The cited data are the intrinsic diffusion

coefficient of Ag into Au through some calculations [3].

Considering the different size and temperature depen-

dences of Dðr; TÞ functions of Figs. 2 and 3 together, it

could be believed that there were correspondence

between the experimental results and the model predic-

tions of Eq. (9).

In a classical approach made to model bulk diffusion

through surfaces with large curvature radius r; the main term

acting is P ¼ 2f =r related to the surface (or interface) stress

f : The variation of EðrÞ is then due to an activation volume

PDV with DV ¼ DVf þ DVm in terms of a point defect

mechanism where DVf and DVm are the formation and the

migration volume of the point defects involved. These three

quantities being positive lead to an increase of EðrÞ as r

decreases. If this consideration is applied to nanoparticles

(or small grains) where there is also a large curvature on the

surface, there is a reverse result of Eq. (9). However, the

above consideration cannot be applied on nanocrystals. This

is because the surface diffusion needs a much smaller

activation enthalpy where the full free surface supply

enormous room for atom diffusion with lower diffusion

resistance where DV ! 0: This results in a 1=r relationship

of EðrÞ in terms of a simple surface (interface)/volume ratio

due to the contribution of surface diffusion. Thus, the

diffusion coefficient of nanocrystals may be much larger

than that of the corresponding bulk. Moreover, the essential

assumption during the deduction of Eq. (8) is that the ratio

of msd between the surface atoms and the interior atoms is

size-independent [8,11]. Thus, the enhancement of the msd

of a nanocrystal is induced by not only the large percentage

of the surface atoms of the nanocrystals, but also the interior

atoms of the nanocrystals, which implies that the internal

energy of interior atoms of the nanocrystals is also higher

than the corresponding bulk and thus the necessary

activation of atoms for diffusion is easier with smaller

activation energy compared with the corresponding bulk. As

result, the drop of EðrÞ is stronger than that being pro-

portional to 1=r of the nanocrystals due to the additional

contribution of interior atoms of nanocrystals.

The surface melting phenomena [13] have not been

considered as a mechanism for the rapid increase of the

diffusion coefficient of elements for nanostructured

materials or nanocrystals. According to the experimental

results, the surface melting could not lead to a full alloying

of the core þ shell structure [3] since the formation of the

coherent interface between the Au core and the Ag shell can

avoid any surface melting [25] while the nanostructured Fe

is built by grain boundaries.

4. Conclusion

In summary, a model for Dðr; TÞ and EðrÞ functions are

established. Dðr; TÞ increase of nanocrystals is induced by

the decrease of EðrÞ due to the size effect. The model

predictions for Dðr; TÞ function of N diffusing into

nanostructured bcc Fe and Ag diffusing into Au nanocores

are in agreement with the experimental results.
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