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Abstract. A unified model, free of any adjustable parameters, for the size-dependence and
dimension-dependence of melting point depression and superheating of nanocrystals is
developed. In terms of the consideration of the surface/volume ratio of nanocrystals, the
suppression of melting point of nanocrystals and superheating of embedded nanocrystals are
predicted. The model predictions for the melting temperatures of nanocrystals are consistent
with the experimental results and molecular dynamics simulations.

1. Introduction

The melting of nanocrystals has received considerable
attention since Takagi in 1954 experimentally demonstrated
that ultrafine metallic nanocrystals melt below their
corresponding bulk melting temperature [1]. It is now known
that the melting temperature of all low-dimensional crystals,
including metallic [2–4], organic [5, 6] and semiconductor
[7] depends on their sizes. For free standing nanocrystals,
the melting temperature decreases as its size decreases
[1–7]. For nanocrystals embedded in a matrix, they can
melt below or above the melting point of the corresponding
bulk crystal depending on the interface structure between
embedded nanocrystals and the matrix [8–14]. If the
interfaces are coherent or semi-coherent, an enhancement of
the melting point is present. Otherwise, there is a depression
of the melting point [13, 14]. Some molecular dynamics
(MD) simulations have shown that free clusters exhibit a
depression of the melting point as the size decreases [15, 16]
while embedded or coated clusters can exhibit superheating
[17, 18], depending on the nature of the interfaces. A
thorough understanding of the thermal properties of such
low-dimensional materials is of importance because of their
potential applications in the field of microelectronics, solar
energy utilization and nonlinear optics.

Recently, a model for size-dependent melting temper-
ature is developed based on the size-dependent amplitude
of the atomic thermal vibrations of nanocrystals in terms of
the Lindemann criterion [3–5]. The model has predicted the
size-dependent melting for metallic thin films [3], for metallic
nanowires [4] and for organic nanocrystals [5]. Since all the
parameters in our model are only the well known bulk melt-
ing temperature and the bulk melting entropy, our model can
predict the size-dependent and dimension-dependent melt-

ing temperature of any kind of nanocrystals. The available
experimental evidence confirms the predicted results.

In this contribution, the theoretical prediction in terms
of the above model is carried out for the size-dependent
and dimension-dependent melting of nanocrystals and for
the size-dependent superheating of embedded nanocrystals.
The correspondence between the theoretical predictions and
the experimental results of the melting temperatures of the
nanocrystals was found.

2. Model

The Tm(r) function of metallic and organic nanocrystals is
described by the following expression [4–7]

Tm(r)/Tm(∞) = exp[−(α − 1)/(r/r0 − 1)] (1)

where Tm(r) and Tm(∞) are the melting temperature of the
nanocrystals with radius r and corresponding bulk crystals,
respectively. r0 denotes a critical radius at which all atoms
of the particle are located on its surface. α is defined as
the ratio of the mean square displacement (msd) of atoms
on the surface and that in the interior of crystals [5]. For
low-dimensional crystals, r0 is dependent on the dimension
of the crystal d: d = 0 for nanocrystals, d = 1 for nanowires
and d = 2 for thin films. In general, the dimension can be
fractional [3]. For a nanoparticle, r has the usual meaning of
radius. For a nanowire, r is taken as its radius. For a thin film,
r denotes its half thickness. r0 is given by: (1) r0 = 3h for
d = 0 since 4πr2

0 h = 4πr3
0 /3; (2) r0 = 2h for d = 1 since

2πr0h = πr2
0 ; and (3) r0 = h for d = 2 since 2h = 2r0. In

short, the relationship between d and r0 is [3–5]

r0 = (3 − d)h. (2)
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Figure 1. Schematic diagram of four types of low-dimensional
nanocrystals. (a) Spherical particles, d = 0; (b) thin films, d = 2;
(c) disc-like particles, d = 1 and (d) nanowire, d = 1.

Note that if the crystalline structure or co-ordination
number of a crystal is different, h varies somewhat. To
eliminate this effect, h is calculated by the volume per
atom � such that � = πh3/6 [19]. This method has an
additional advantage that the atomic volume is measurable
in any structure, no matter how complex, by dividing the
volume of the unit cell by the number of atoms in the unit
cell.

When a nanoparticle is deposited on an inert substrate, it
may wet or not wet the substrate. When the deposit does not
wet the substrate, the deposit will prefer taking a spherical
shape which has the smallest surface/volume ratio where
d = 0. When the deposit wets the substrate, an island-like or
disc-like particle may arise. The surface/volume ratio of this
shape is smaller than the spherical particle since one surface
of the disk disappears. In fact, the effective surface area of
a disk on the substrate is half of that of a film. For a film,
r0 = h. It is not difficult to understand that r0 = 2h for a disk-
like particle, which implies a quasi-dimension of the disk of
one with respect to equation (2). To clarify four different
shapes of low-dimensional materials, a schematic diagram of
above four low-dimensional crystals are shown in figure 1.
Although (2) does not consider the wetting details which
differ for different deposits and substrates, equation (1) in
terms of (2) can predict the Tm(r) function of the nanocrystals
when the shape of the nanocrystals are known.

Since a crystal is characterized by its long-range order,
the smallest nanocrystal should have at least a half of the
atoms located within the nanocrystal. Hence, the smallest
r is 2r0 [3–5]. One would argue that even for a thin film
of a monolayer, it may exist in the crystalline state due to
its two-dimensional long-range order. However, all atoms
of this thin film are located on the surface and their thermal
vibration differs from the bulk crystals. In fact, Mitch et al
[20] have found that when r of the Bi thin film decreases
to 0.4 nm, its crystallinity disappears. This observation is
expected based on (2): for Bi, h = r0 = 0.20 nm [21] since
d = 2, its crystallinity disappears when r = 2r0 = 0.40 nm.
For Pb nanowire in carbon nanotubes, d = 1, h = 0.39 nm
[19] and r0 = 0.78 nm, 2r0 = 1.56 nm, which again is fully
consistent with the observation that the crystallinity of Pb
disappears at r = 1.5 nm [21].

It is evident from (1) that the Tm(r) function depends
on α. If α > 1, Tm(r)/Tm(∞) < 1, Tm(r) decreases as r

decreases. When α < 1, does Tm(r)/Tm(∞) > 1 imply

that Tm(r) increases as r increases. For crystals with free
surfaces, such as free-standing particles, particles or thin
films deposited on inert substrates, and nanowires in porous
glasses, their msd of the surface atoms is larger than that of
the interior atoms of the nanocrystals and α > 1. α can
be deduced by the vibrational entropy expression of Mott
[25, 26] and expressed as [7]

α = [2Sm(∞)/(3R)] + 1. (3)

Substituting (3) into (1), there is

Tm(r)/Tm(∞) = exp{−2Sm(∞)/[3R(r/r0 − 1)]}. (4)

When nanocrystals are embedded in the matrix, their
surface atoms are no longer free-standing. α could be smaller
than one due to the interaction on the interfaces between the
embedded nanocrystal and the matrix. When the interface is
coherent, the msd of the surface atoms of nanocrystals falls
between that of the interior atoms of nanocrystals and that of
the bulk matrix. It is simple to assume that the msd of atoms
on the interface is an averaged msd value of interior atoms of
nanocrystals and that of the bulk matrix, α is read as [24]

α = {[h2
M/h2

m]Tm(∞)/TM(∞) + 1}/2 (5)

where hM and hm are atomic diameters of the matrix and
the nanocrystals, respectively. TM(∞) denotes the melting
temperature of the matrix. In terms of (1) and (5), the size
dependence of superheating of the melting temperature of
nanocrystals can be predicted.

3. Results and discussions

3.1. Depression of melting temperature of nanocrystals

Figure 2 presents a comparison between the model
predictions of (5) and the experimental results of Tm(r)

for disc-like particles of Au (d = 1) [25] and the MD
results of Au nanoparticles (d = 0) [16]. As shown in the
figure, the theoretical model is in good agreement with both
experimental and MD evidence. Tm(r) decreases as r and d

decrease.
Figures 3 to 6 give the comparison between our model

prediction of (5) and experimental data for spherical (d = 0)
and disc-like (d = 1) particles of Pb [26, 27] (figure 3), Al
(d = 0) [28] (figure 4), In (d = 1 and d = 0) [27, 29]
(figure 5) and Sn (d = 1) [25, 28] and the corresponding
thin film (d = 2) [30] (figure 6), respectively. It is observed
that the melting temperature depression can be induced by
both the size and the dimension. Although the sources of the
experimental results and the MD simulations are different, it
is easy to understand different results from different authors
according to our universal model under the consideration of
dimension.

Since we have compared the size dependence of the
melting temperature for organic nanoparticles elsewhere [5],
here we only show a comparison of the size-dependent
melting of an inert gas crystal of Ar between our model
prediction of (5) and the MD results [15]. We again observed
a rather good agreement between our model and the MD
results as shown in figure 7.
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Figure 2. The Tm(r) function of Au nanocrystals in terms of
equation (4). For the disk-like nanocrystals, d = 1,
r0 = 2h = 0.6376 nm with h = 0.3188 nm [19],
Tm(∞) = 1337.58 K and Sm(∞) = 9.38 J mol−1 K−1 [34]. For
spherical nanoparticles, d = 0 and r0 = 3h = 0.9564 nm. + and• denote the experimental [25] and MD [16] results, respectively.
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Figure 3. The Tm(r) function of Pb nanocrystals. For disc-like
particles, d = 1, r0 = 2h = 0.7796 nm with h = 0.3898 nm [19],
for spherical particles, d = 0, r0 = 3h = 1.1694 nm, where
Tm(∞) = 600.6 K and Sm(∞) = 7.99 J mol−1 K−1 [34]. The
symbols + and • denote the measured Tm(r) values [26, 27]. For
Pb nanocrystals embedded in an Al matrix, the Tm(r) function is
plotted by (1), α = 0.71 in terms of (5) where hM = 0.3164 nm
[19], TM(∞) = 933.25 K [34]. The experimental results are
plotted as �, and � [13, 18, 33]. For Pb nanocrystals embedded
in a Zn matrix the Tm(r) function is calculated by (1) with
α = 0.77 in terms of (5), where hM = 0.3076 nm [19],
TM(∞) = 692.73 K [34]. The symbol ◦ denotes the experimental
data [15].

These correspondences between our model and the
experimental and MD evidence imply that our model
bears universally on the melting of different kinds of
nanocrystals. The nature of dimension dependence of the
melting temperature is the difference of the ratio of the surface
atom number and atom number within the nanocrystals. This
ratio increases as d decreases.

3.2. Superheating of nanocrystals

The theoretical prediction of (1) and (5) for the superheating
of Pb particles is compared with the experimental results in
figure 3 where Pb particles are embedded in Al [8, 13, 31]
and in the Zn matrix [10]. It is clear that the size dependence
of superheating is stronger than the matrix dependence
of the superheating. This is possibly due to the small
difference of the melting temperatures of Zn and Al. Figure 5
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Figure 4. The Tm(r) function of spherical Al nanocrystals in
terms of equation (5) where r0 = 3h = 0.9492 nm in terms of (2)
with d = 0 and h = 0.3164 nm [19], Tm(∞) = 933.25 K and
Sm(∞) = 11.56 J mol−1 K−1 [34]. • denotes the experimental
values [28].

0 10 20 30 40
250

300

350

400

450

500

550

bulk

In

In-Al

d=1

d=0

T
m
(r

) 
 [K

]

r  [nm]

Figure 5. The Tm(r) function of In nanocrystals. For disc-like
particles, d = 1, r0 = 2h = 0.7364 nm; for spherical particles,
d = 0, r0 = 3h = 1.1046 nm, where h = 0.3682 nm [19],
Tm(∞) = 429.76 K and Sm(∞) = 7.59 J mol−1 K−1 [34]. The
symbols • and denote the measured Tm(r) values [27, 29]. For
In nanocrystals embedded in an Al matrix, Tm(r) is obtained by
(1), α = 0.67 in terms of (5) where hM = 0.3164 nm [19],
TM(∞) = 933.25 K [34]. The experimental evidence is shown as
�, �, ◦ and � [9, 14, 32, 33].

0 20 40 60 80
300

350

400

450

500

550

Sn

d=1

d=2

T
m
(r

) 
 [K

]

r  [nm]

Figure 6. The Tm(r) function of Sn nanocrystals in terms of (4)
where Tm(∞) = 429.76 K and Sm(∞) = 13.92 J mol−1 K−1 [34].
The symbols •, � and denote the measured Tm(r) values
[25, 27, 30]. For the disk-like nanocrystals, r0 = 2h = 0.7448 nm
with h = 0.3724 nm [19], for thin films, d = 2, and
r0 = h = 0.3724 nm in terms of (2).

gives Tm(r) function of In nanocrystals embedded in an Al
matrix compared with the corresponding experimental results
[9, 14, 32, 33]. It is obvious that such predictions in different

2655



Z Zhang et al

1 2 3 4 5 6

40

50

60

70

80

Ar(d=0)

T
m

(r
) 

 [
K

]

r  [nm]

Figure 7. Comparison between the model prediction of (4) (full
curve) and MD results (•) [15] for Ar nanoparticles where
r0 = 3h = 0.528 nm in terms of (2) since d = 0 and h = 0.176 nm
[34], Tm(∞) = 83.81 K and Sm(∞) = 14.18 J g atom−1 K−1 [34].

systems give a good agreement with the experimental data of
different authors.

As shown in figures 3 and 5, only when α < 1,
Tm(r)/Tm(∞) > 1 does Tm(r) increase as r decreases. α <

1 implies that the effect of compressive force is essentially
on the surface atoms of the nanocrystals. Thus, the stress
induced by the matrix on the nanocrystals is inhomogeneous.
As r decreases, the percentage of the surface atoms of the
nanocrystals increases, and thus, the effect of the stress
increases too.

Because there is agreement between the model predic-
tion and experimental results, equation (5) should be rea-
sonable. In terms of (5), when α < 1, Tm(∞)/TM(∞) <

h2
m/h2

M . While Tm(∞)/TM(∞) < 1 is necessary and under-
standable for the superheating, hm/hM > 1 in all reported
systems (see the figure captions in figures 3 and 5). It is
plausible if hm/hM < 1, the local internal stress on the inter-
face is a tensile one, which increases but does not decrease
the msd of the surface atoms of the nanocrystals. Thus, any
evident superheating should occur only when h2

M/h2
m < 1

although this is not a necessary condition for α < 1 in (5).

4. Summary

In conclusion, a simple model based on the enhancement or
the suppression of thermal vibrations of atoms on the surface
(or the interface) of nanocrystals is developed to account
for size-dependent and dimension-dependent melting. For
free-standing nanocrystals, the melting behaviour depends
on the size, the dimension and α. Although (5) as a
function of crystal size is derived by formally extending
Mott’s estimate of the melting entropy of an infinite metallic
crystal to metallic crystals of finite size, they can be utilized
for nanocrystals whose melting behaviour are dominated by
vibration. Reasonable agreement has been found between
the experimental data of free-standing metallic nanocrystals
and the model prediction.

For nanocrystals embedded in a matrix, the necessary
conditions for the superheating of the nanocrystals are that
α < 1, the matrix has a higher melting temperature than the
embedded crystals in the bulk have and there are the coherent
or semi-coherent interfaces between them, which decreases
the msd of the surface atoms of the embedded nanocrystals.

Another sufficient, but not necessary condition is that the
atomic diameter of the matrix is smaller than that of the
nanocrystals. Experimental evidence confirms the present
model.
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