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General equations for lattice contraction and surface stress of fcc nanocrystals are established based on the
Laplace-Young equation and a consideration for the size-dependence of the solid-liquid interface energy.
The predictions of our equations are in agreement with the experimental results on the measurement of lattice
contraction and surface (interface) stress of nanoparticles and thin films and theoretical calculations.

It is well-known that nanocrystals with free surfaces have
considerable lattice contraction induced by the large surface/
volume ratio.1-7 The lattice contraction increases as the size of
the nanocrystals decreases. From a mechanical point of view,
hydrostatic pressure on the surface induced by intrinsic surface
stressf results in lattice contraction or lattice strainε.1-3,8-11

In fact, the measurement of lattice contraction has been
considered as a general method to determine an isotropicf.1,12-13

Note thatf differs from the specific surface excess free energy
γ. The latter describes the reversible work per unit area to form
a new solid surface, whereas the former denotes the reversible
work per unit area due to elastic deformation, which is equal
to the derivative ofγ with respect to the strain tangential to the
surface.12,13Since surface stress is a fundamental thermodynamic
quantity for which few reliable experimental and theoretical
values are available, the derivation of a general expression for
f without free parameters would be an important progress.

In this contribution, general equations without any free
parameters forε and f are developed by considering the
relationship betweenγ andf and by determining two limit cases
of the size-dependentγ function. The model predictions forε
andf are found to be consistent with experimental and theoretical
results.

For a solid particle immersed in a fluid of the same compo-
sition, a scalar definition off for the solid can be written as13,14

whereG states the total excess Gibbs free energy andA shows
the surface area with∆ being the difference, or

For the particle with a volume ofV and a diameter ofD,
according to the Laplace-Young equation,12-13

with P being the pressure difference betweenPint inside the
particle andPext in the fluid on the outside of the particle. Using
the definition of compressibilityκ ) -∆V/(VP), ε ) ∆D/D )
∆A/(2A) ) ∆V/(3V) under small strain andA/V ) 6/D, eq 3
can be rewritten as

To find the mathematical solution off andγ, we need two
boundary conditions ofγ. Since an understandable asymptotic

* Corresponding author. Fax:+86/431-5687607; e-mail: Jiangq@
jlu.edu.cn.

f ) ∂G/∂A ) ∂(γA)/∂A ) γ + A∂γ/∂A ≈ γ + A∆γ/∆A (1)

∆γ ) (∆A/A)(f - γ) (2)

P ) 2fA/(3V) ) 4f/D (3)

ε ) -4κf/(3D) (4)
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limit is that whenD f ∞, γ f γ0 whereγ0 as a reference state
is the corresponding bulk value ofγ, let

Substituting eq 5 into eq 2 and taking it in mind thatV/A )
D/6 and∆A/A ) 2ε ) -8κf/(3D) in terms of eq 4, we get

We assume that when almost all atoms of a particle are
located on its surface with a diameter ofD0, the particle is almost
indistinguishable from the surrounding fluid. Note that as the
size of a solid particle decreases, the free energy density of the
particle increases and would be equal to that of the correspond-
ing fluid at D ) D0.15 This assumption leads to another limit
case: AsD f D0, γ f 0 whereD0 depends on the existence
of curvature.15 For a particle or a wire with curvature surface,
D has a usual meaning of diameter (defined as the side length
for the cubic or rhombohedral particle). For a thin film,D
denotes its thickness.D0 is determined byhA/V ≈ 1 with h
being atomic diameter and as the first-order approximation,D0

is roughly given by

where equation (7-1) for particles and wires and equation (7-2)
for thin films. Now eq 6 can be rewritten as

with 8κf 2/(3γ0) ) D0, or

Two roots off have different signs with the same absolute
value under the conditions ofγ(D0) ) 0 and 0e γ(D)/γ0 e 1.
Sincef is one order larger thanγ0 (see Table 1), the denominator
in eq 8 is negligible. Thus,γ(D)/γ0 ≈ 1 - D0/D seems to be a
good first-order approximation, which is consistent with general
calculations of thermodynamics16-19 and quantum chemistry6

for particles as well as computer simulation results.20

In eq 9,γ0 has been deduced according to Gibbs-Thomson
equation:21

whereR is the ideal gas constant,Hm(T) is the temperature-
dependent melting enthalpy of bulk crystals,Svib is the vibra-
tional part of the overall melting entropySm, Vm is the molar
volume. Although the melting entropy of crystals consists, at
least, of three contributions (positional, vibrational, and elec-
tronic components21,22), the melting for metallic and organic
crystals is mainly vibrational in nature, andSvib ≈ Sm is used.21,22

According to the Helmholtz function,Hm(T) ) gm(T) -
Tdgm(T)/dT wheregm(T) is the volume Gibbs free energy. For
elements,gm(T) ) Hm(Tm - T)7T/Tm(Tm + 6T),23,24 and thus

whereHm is the melting enthalpy of bulk crystals at the melting
temperatureTm. Finally, taking eq 11 into eq 10 and taking eq
10 into eq 9, eq 9 can be rewritten as

The termf, shown in eq 12, is the stress on solid-liquid
interface, not the solid-gas interface. Under the assumption that
the fluid has no effect on the surface strain of solids,f obtained
by eq 12 is considered to be identical with solid-gas interface
stress or surface stress.

In terms of eq 12,f values for particles and multilayer films
have been calculated and are shown in Tables 1 and 2 and are
compared with the summarized literature values forf. As seen
in the tables, both positive and negative stresses are possible in
a practical system, depending on different surface (interface)

TABLE 1: Comparison of Surface Stresses among Different Model Estimations and Experimental Resultsa

Au Pt Ag Cu Ni Al Pb Ir

h(nm)25 0.2884 0.2775 0.2889 0.2556 0.2492 0.2863 0.3500 0.2174
Vm (cm3 mol-1)26 10.2 9.1 10.3 7.1 6.59 10 18.17 8.54
Hm(KJ mol-1)26 12.55 19.6 11.3 13.05 17.47 10.79 4.799 26.1
Tm(K)26 1337.6 2045 1234 1357.6 1726 933.25 600.6 2716
Sm(J mol-1 K-1) 9.38 9.58 9.16 9.61 10.12 11.56 7.99 9.61
κ(10-12 Pa-1) 5.848 3.623 9.653 7.257 5.640 13.30 21.83 2.695
γ0(J/m2) 0.119 0.136 0.111 0.160 0.189 0.168 0.045 0.110
f1 (J/m2) 2.097 2.795 1.578 2.051 2.502 1.648 0.737 2.577
f2 (J/m2)12 2.77 5.60 1.25 0.82 5.30
f3(J/m2)28 1.714 1.041 1.106 0.817
f4(J/m2)29 1.94 1.67
f5(J/m2)1-3 1.175( 0.2 2.574( 0.4 1.415( 0.3

a Svib ≈ Sm ) Hm/Tm, andκ ) 1/B whereB is the bulk modulus cited from reference 27.γ0 is calculated in terms of eq 10 atT ) 298 K. The
term f1 is determined by eq 12 withD0 ) 2h at T ) 298 K, f2 denotes the results of the first principles calculation andf3 the computer simulation
results,f4 gives the results of the modified embedded atom method potentials,f5 is the experimental results.

∆γ ) γ - γ0 (5)

γ(D)/γ0 ) [1-8κf 2/(3γ0D)]/[1-8κf/(3D)] (6)

D0 ) 3h (7-1)

D0 ) 2h (7-2)

γ(D)/γ0 ) [1 - D0/D]/[1 - γ0D0/(fD)] (8)

f ) ([(3γ0D0)/(8κ)]1/2 (9)

TABLE 2: Comparison of f in J/m2 for Incoherent
Multilayers with Different Methods a

multilayer A/B f1 f532

Ag/Ni -1.987 -2.27( 0.67,-2.24( 0.21,-2.02( 0.26
Ag/Cu -1.803 -3.19( 0.43,-0.21( 0.10

a The subscripts off have the same meaning as those in Table 1. As
a first order approximation,γ0 and κ on the layer interface are
considered as an algebraic average value of two elements whereγ0

andκ values of each element are in Table 1 (for solid-solid interface,
γ0 here used is two times of that of a solid-liquid interface in Table
1,30 which is also in agreement with a phenomenological model31).

γ0(T) ) 2hSvibHm(T)/(3VmR) (10)

Hm(T) ) 49/(Tm/T + 6)2Hm (11)

f ) ( 7
2(Tm/T + 6) xD0hSvibHm/(κRVm) (12)
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structures.32 Our results of eq 12 correspond to the theoretical
works12,28-29 and the experimental results1-3,32 very well.

In terms of equations 12 and 4,

Figure 1 givesε(D) functions of particles in terms of eq 13
and experimental results of fcc Au,1,6 Cu,3,4 Pt,3 Ag2, and Al5

nanoparticles. The observed experimental data ofε(D), which
are in the range of about 0.1-2.5%, correspond to the prediction
of eq 13 perfectly.

In summary, general equations without any free parameters
on surface stress and size-dependent strain of nanoparticles and
thin films are established and confirmed by the experimental
results for fcc metals. The results indicate that the values of
surface stress and strain are related with the measurable materials
constants. The equations show an expedient way to determine
the surface stress and lattice strain.

Acknowledgment. The financial support from the NNSFC
under Grant No. 59931030, 50071023, 50025101 and from the
Trans-Century Training Program Foundation for the Talents by
the Ministry of Education of China are acknowledged.

References and Notes

(1) Mays, C. W.; Vermaak, J. S.; Kuhlmann-Wilsdorf, D.Surf. Sci.
1968, 12, 134.

(2) Wasserman, H. J.; Vermaak, J. S.Surf. Sci. 1970, 22, 164.
(3) Wasserman, H. J.; Vermaak, J. S.Surf. Sci. 1972, 32, 168.
(4) Apai, G.; Hamilton, J. F.Phys. ReV. Lett. 1979, 43, 165.
(5) Woltersdorf, J.; Nepijko, A. S.; Pippel, E.Surf. Sci. 1981, 106, 64.
(6) Müller, H.; Opitz, Ch.; Strickert, K.; Skala, L.Z. Phys. Chemie

Leipzig1987, 268, 634.
(7) Yu, X. F.; Liu, X.; Zhang, K.; Hu, Z. Q.J. Phys. Condens. Matter

1999, 11, 937.
(8) Shuttleworth, R.Proc. Phys. Soc. A1950, 63, 444.
(9) Cahn, J. W.Acta Metall.1980, 28, 1333.

(10) Hahn, H.Nanostruct. Mater.1993, 2, 251.
(11) Skandan, G.; Hahn, H.; Roddy, M.; Cannon, W.J. Am. Ceram.

Soc.1994, 77, 1706.
(12) Cammarata, R. C.; Sieradzki, K.Annu. ReV. Mater. Sci.1994, 24,

215 and references therein.
(13) Weissmu¨ller, J.; Cahn, J. W.Acta Mater.1997, 45, 1899.
(14) Vanfleet, R. R.; Mochel, J. M.Surf. Sci.1995, 341, 40.
(15) Jiang, Q.; Shi, H. X.; Zhao, M.J. Chem. Phys.1999, 111, 2176.
(16) Langmuir, I.J. Am. Chem. Soc.1916, 38, 2221.
(17) Tolman, R. C.J. Chem. Phys.1949, 17, 333.
(18) Kirkwood, J. G.; Buff, F. P.J. Chem. Phys.1949, 17, 338.
(19) Buff, F. P.J. Chem. Phys.1951, 19, 1591.
(20) Broughton, J. Q.; Glimer, G. H.J. Chem. Phys.1986, 84, 5759.
(21) Jiang, Q.; Shi, H. X.; Zhao, M.Acta Mater.1999, 47, 2109.
(22) Regel, A. R.; Glazov, V. M.Semiconductors1995, 29, 405.
(23) Singh, H. B.; Holz, A.Solid State Comm.1983, 45, 985.
(24) Perepezko, J. H.; Palk, J. S.J. Noncryst. Solids, 1984, 61, 62, 113.
(25) King, H. W. In Physical Metallurgy; Cahn, R. W., Ed.; North-

Holland: Amsterdam, 1970; p 60.
(26) Table of periodic properties of the elements; Sargent-Welch

Scientific Company: Skokie, Illinois, 1980; p 1.
(27) Brandes, E. A., Ed.Smithells Metals Reference Book, 6th ed.;

Butterworth & Co (Publishers) Ltd: London, 1983; p 15-2.
(28) Streitz, F. H.; Cammarata, R. C.; Sieradzki, K.Phys. ReV. B 1994,

49, 10699.
(29) Streitz, F. H.; Cammarata, R. C.; Sieradzki, K.Phys. ReV. B 1994,

49, 10707.
(30) Kotze, I. A.; Kuhlmann-Wilsdorf, D.Appl. Phys. Lett.1966, 9,

96.
(31) Weissmu¨ller, J. Nanostruct. Mater.1993, 3, 261.
(32) Spaepen, F.Acta Mater.2000, 48, 31 and references therein.

Figure 1. ε(D) functions of particles (solid lines) in terms eq 13 with
parameters shown in Table 1 (D0 ) 3h). The symbols show the
experimental data whereb1 and96 are the measured mean values of
∆a/a for Au in 1a;b3 and94 are that of∆a/a for Cu in 1b;93 is the
measured values of∆a220/a220 for Pt in 1c;b2 denotes that of∆a220/
a220 for Ag in 1d and95 shows that of∆a/a for Al in 1e.

ε ) ( 14
3(Tm/T + 6) xκD0hSvibHm/(RVm) (13)
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